Trends and Challenges in the Heavy Crude Oil Market

4th Heavy Oil Working Group

Bogota – September 22, 2015
Worldwide heavy crude oil and bitumen resources are estimated to be approximately 9,000 Bn bbls and 38% is concentrated in South America.

Worldwide Heavy Crude Oil Resources

- The largest heavy crude oil reserves are located in the Orinoco Belt in Venezuela and the oil sands in Alberta, Canada.

Geographic Distribution of Heavy Crude Oil – Original Oil in Place

<table>
<thead>
<tr>
<th>Region</th>
<th>Heavy Crude Oil (Bn bbls)</th>
<th>Natural Bitumen (Bn bbls)</th>
<th>Total (Bn bbls)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. America</td>
<td>651</td>
<td>2391</td>
<td>3042</td>
<td>34%</td>
</tr>
<tr>
<td>S. America</td>
<td>1127</td>
<td>2260</td>
<td>3387</td>
<td>38%</td>
</tr>
<tr>
<td>Europe</td>
<td>75</td>
<td>17</td>
<td>92</td>
<td>1%</td>
</tr>
<tr>
<td>Africa</td>
<td>83</td>
<td>46</td>
<td>129</td>
<td>1%</td>
</tr>
<tr>
<td>Transcaucasia</td>
<td>52</td>
<td>430</td>
<td>482</td>
<td>5%</td>
</tr>
<tr>
<td>Middle East</td>
<td>971</td>
<td>0</td>
<td>971</td>
<td>11%</td>
</tr>
<tr>
<td>Russia</td>
<td>182</td>
<td>347</td>
<td>529</td>
<td>6%</td>
</tr>
<tr>
<td>South Asia</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>0%</td>
</tr>
<tr>
<td>East Asia</td>
<td>168</td>
<td>10</td>
<td>178</td>
<td>2%</td>
</tr>
<tr>
<td>SE Asia & Oceania</td>
<td>68</td>
<td>4</td>
<td>72</td>
<td>1%</td>
</tr>
<tr>
<td>Total</td>
<td>3396</td>
<td>5505</td>
<td>8901</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Schlumberger; USGS 2007
Heavy crude oil, oil sands and bitumen reserves represent over 50% of the total global crude oil and it is hoped that its production will increase from 13 to 18 MMbd between 2015 and 2035.

PDVSA is the company with the largest production of extra heavy crude oil in the world, followed by Canadian companies and by the Majors.

<table>
<thead>
<tr>
<th>KBD</th>
<th>Total</th>
<th>PDVSA</th>
<th>Canadian</th>
<th>Total</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO+OS</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Analysis Arthur D. Little
In Canada, oil sands construction projects will continue to move forward, but there is some uncertainty regarding future projects given the low prices.

- Total Canadian crude oil production will increase from 3.7 to 5.4 MMbd between 2014 and 2030...
- ...whereas oil sands production will increase from 2.3 to 4.2 MMbd

Source: Canadian Association of Petroleum Producers, June 2015, Standard Chartered
In Alberta, oil sands production has reached a significant degree of maturity, since SAGD production and mining are the primary production methods.

Oil Sands in Alberta

<table>
<thead>
<tr>
<th>Alberta</th>
<th>Production Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Mining**
 - 40%
- **In situ (SAGD, SCC, CHOPS)**
 - 60%
- **Upgrading**
- **Dilution**
- **Train**

- Production of Heavy Crude Oil: 2,700 kbd
- Proven reserves: 170 Bn Bbls

There are over 50 companies currently in operation, including the following:
- Suncor
- Canadian Natural Resources
- Imperial Oil

The primary production methods are as follows:
1. Oil sands mining
2. SAGD

Source: Finland Alberta Technology Seminar; Analysis Arthur D. Little
In general, the mining and SAGD processes are followed by a dilution phase so that the crude oil can be transported to upgrading facilities.

Production Processes in Alberta

SAGD
- Generating water vapour
- Producing oil sands using vapour
- Separating water
- Crude oil is transported with solvent to the upgrading facility.
- Solvent is reused in later stages.

Mining
- Oil sands mining processes
- Separation of sands from bitumen
- Dilution process so it can be transported to upgrading facilities
- Solvent is reused in later stages.

Source: The Geological Society; Suncor; Alberta Energy; Total Energy; Analysis Arthur D. Little
The natural market for Canadian crude oil is the United States, which can be accessed through pipelines or railways. The controversial expansion of the Keystone XL pipeline has been suspended.

Keystone XL Pipeline, Canada

- Phases 3 and 4 were vetoed by President Obama and do not have the approval of the United States Senate.
- These phases would have allowed for an increase in the transportation of crude oil from 590 to 1,420 kbd
- Environmentalists are opposed to the construction of a pipeline that would encourage oil sands development to expand.

Source: Reuters; US News; Analysis Arthur D. Little
In the Orinoco Belt, the primary production method is cold extraction by injecting solvent in horizontal wells.

Heavy Crude Oils in the Orinoco Belt

- There are 12 joint ventures that are active in the Orinoco Belt.
- The primary production method is cold extraction by injecting solvent in horizontal wells.
- Then, the crude oil is upgraded at the CIJA* complex and the solvent is recycled to be reused in the fields.

Active Joint Ventures

- Production: 1,640 kbd
- Proven Reserves: 280 Bn bbls

*CIJA: Complejo Industrial José Anzoátegui

Source: PDVSA; Global Data 2015
...The crude oil is then upgraded in the facilities of the Complejo de Refinación José Anzoátegui refinery complex and the solvent is recycled and reused in the fields.

<table>
<thead>
<tr>
<th></th>
<th>Junín</th>
<th>Ayacucho</th>
<th>Carabobo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fields</td>
<td>Zuata Principal</td>
<td>Huyapari</td>
<td>Cerro Negro</td>
</tr>
<tr>
<td>Production</td>
<td>130 kbd</td>
<td>120 kbd</td>
<td>160 kbd</td>
</tr>
<tr>
<td>API</td>
<td>8.3°</td>
<td>8°</td>
<td>8.5°</td>
</tr>
<tr>
<td>Upgrading</td>
<td>200 kbd</td>
<td>200 kbd</td>
<td>160 kbd</td>
</tr>
<tr>
<td>Members</td>
<td>PDVSA, TOTAL</td>
<td>PDVSA, Chevron</td>
<td>PDVSA, BP</td>
</tr>
</tbody>
</table>

Carabobo Projects 1, 2 & 3 – Delayed
- Very aggressive development plans, including the construction of upgrading facilities and refinery units; these plans have been postponed.
- Current production is diluted with 30% gas.
- In 2015, Petrocarabobo launched fluid processing units.

Source: PDVSA, Analysis Arthur D. Little; Technological Developments for Enhancing Extra Heavy Oil Productivity in Fields of the Faja Petrolífera del Orinoco (FPO) (Orinoco Oil Belt), Venezuela; Chevron
The Petrocedeño project, Zuata field, produces crude oil of 8.3 °API by diluting it with gas and a subsequent upgrading in various refinery units.

Petrocedeño Project – Zuata Field (Junín)

Production
- Production of heavy crude oil of 8.3° API
- **Injecting gas** in the reservoir to generate a mixture of 17°API and facilitate recovery
- Recovery using progressive cavity pumps in horizontal wells

Upgrade
- The crude oil and gas mixture is pumped to the **CIJA* upgraders**
- Upgraded through distillation units, delayed coquing, hydrocracking and hydrotreating
- Production of the Zuata Sweet mixture of 32°API

The cold production methods used allow for recovery factors of between 8 and 15% to be obtained
Heavy crude oil will continue to be produced using cold production methods by injecting solvents and applying EOR techniques for more than 15 years. Starting in 2025, heavy crude oil will start to be produced using thermal methods.

Source: Total; Analysis Arthur D. Little

CIJA: Complejo Industrial José Anzoátegui
There are various techniques for the production of heavy crude oils. Its applications depend on the characteristics of the reservoirs, such as depth and type of formation.

Cold Production

- **Mining**

Thermal Recovery

- **Steam Flooding**
- **Cycle Steam Stimulation**

Cold Production and CHOPS

- CHOPS is a cold process where the production of sand through progressing cavity pumps helps oil production.

VAPEX

- VAPEX uses horizontal well pairs, an injected gas/solvent mixture, and gravity for oil production.

SAGD

- SAGD uses horizontal well pairs, steam and artificial lift to melt bitumen and raise it to the surface.

In-situ combustion

-
Heavy oil development technology that provide higher recovery factors tend to have the greatest environmental impact and consume the most energy.

Heavy Oil Development Technology

<table>
<thead>
<tr>
<th>Method</th>
<th>OPEX</th>
<th>Infrastructure</th>
<th>Recovery</th>
<th>Applicability</th>
<th>Environmental Impact</th>
<th>Energy Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Production</td>
<td>⬤</td>
<td>⬤</td>
<td>▢</td>
<td></td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>CHOPS</td>
<td>⬤</td>
<td>⬤</td>
<td>▢</td>
<td></td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Steam SAGD / CSS</td>
<td>❌</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>Comb Combustión in situ</td>
<td>❌</td>
<td>✸</td>
<td>□</td>
<td>□</td>
<td>❌</td>
<td>❌</td>
</tr>
<tr>
<td>VAPEX</td>
<td>❌</td>
<td>✸</td>
<td>❌</td>
<td>❌</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

Source: Arthur D. Little Analysis

Aplicabilidad: Gravedad y Viscosidad (Applicability: Gravity and Viscosity)
The main challenges for Heavy Oil Development are: 1) Financial; 2) Energy Efficiency; 3) Environmental; 4) Technical

These challenges for heavy oil production are leading companies to develop innovative technology.

Source: Arthur D. Little Analysis
In recent years, there has been a moderate increase in operating costs and capital in Canada for SAGD and Mining projects.

Project Savings in Canada

CAPEX

<table>
<thead>
<tr>
<th>Year</th>
<th>SAGD</th>
<th>Mining</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>16.7</td>
<td>27.1</td>
</tr>
<tr>
<td>2012</td>
<td>19.7</td>
<td>31.7</td>
</tr>
<tr>
<td>2013</td>
<td>19.5</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>25.2</td>
<td></td>
</tr>
</tbody>
</table>

OPEX*

<table>
<thead>
<tr>
<th>Year</th>
<th>SAGD</th>
<th>Mining</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>15.4</td>
<td>16.8</td>
</tr>
<tr>
<td>2012</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>18.4</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>22.7</td>
<td>21.6</td>
</tr>
</tbody>
</table>

* OPEX includes the cost of Natural Gas Natural and Other Fixed (Variables, Electricity)

Source: CANADIAN OIL SANDS SUPPLY COSTS AND DEVELOPMENT PROJECTS
Many new heavy oil developments will require higher crude prices to justify the savings.

To meet demand, crude prices will need to increase in order to cover the production costs of the different types of resources.

Average Full-Cycle Production Costs

Source: Arthur D. Little Including information from IEA
Extra heavy oil development requires high energy intake that has a direct impact on the savings and the environment.

Energy Efficiency

Energy Consumption \((GJ/\text{bbl})\)

- **In-situ + Mejora**
 - Total: 2.6
- **Mining + Improvement**
 - Hydrocracking: 0.3
 - Coking: 0.5
 - SAGD: 1.2
 - CHOPS / EOR: 0.5
 - Mining + Improvement: 0.3

Emissions \((kg \text{ CO2 eq}/\text{bbl})\)

- **In situ + Improvement**
 - Total: 123
- **Mining + Improvement**
 - Improvement: 55
 - in situ: 68
 - Mining + Improvement: 40

In thermal processes, energy consumption can reach up to 20% of the energy produced.

Source: Distinguished Lecturer Program – Canadian Energy Resources Institute; Total Energy; Arthur D. Little Analysis
Extra heavy oil production methods have a high environmental impact, mainly on the Landscape, Water and Air

<table>
<thead>
<tr>
<th>Environmental Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
</tr>
<tr>
<td>Landscape / Ecosystem</td>
</tr>
</tbody>
</table>
| CHOPS In situ | Deforestation
Waste | Filling the mine pit
Reforestation |
| Water | Thermal (in situ) |
| Mining | High water consumption
to generate steam | Implementing processes requiring less water consumption
Reusing water |
| Air | Thermal (in situ) |
| Mining | Emissions while
generating steam | Implementing more energy-efficient processes
Carbon capture |
| Mining | Internal combustion
engine emissions | Using more energy-efficient engines |

Source: Resources to Reserves 2013 – IEA; Distinguished Lecturer Program – SPE; OnePetro; Natural Resources Canada
Most of the emerging technology focus on improving and producing extra heavy oil more efficiently and with less environmental impact

| New Heavy Oil Development Technology |
|------------------------------------|------------------|
| **Hybrid processes that combine different technology** | **Techniques to reduce the environmental impact** |
| - CHOPS + PPT and a second SAGD phase | - Carbon capture |
| - SAGD + solvent injection | - Cogeneration facilities |
| - Non-condensable gas injection | - Use of renewable energy (Solar in Oman) |
| - Use of renewable energy (Solar in Oman) | - Paraffinic Froth Treatment (PFT) – Applied to Mining by Exxon Mobil |
| | |
| **Technology that does not use steam and reduces environmental impact** |
| - Vapor Extraction (VAPEX) (Evaluated by Equion in Colombia) |
| - Solvent Vapor Extraction (SVX) |
| - N-Solv |
| - Electro-Thermal Dynamic Stripping Process (ET-DSP) |
| - Enhanced Solvent Extraction (ESEIEH) |
| - Incorporating Electromagnetic Heating |
| - Walter Alternating Gas (WAG) |
| - Radiofrequency warming | |

Some of the new technology uses the SAGD principle but apply solvents and alternative warming techniques.

Source: Canadian Heavy Oil Association; Imperial Oil; SPE; Exxon Mobil; Arthur D. Little Analysis
Canad is actively promoting the development of projects to reduce the environmental impact. The ACTL project will collect CO2 from industries to inject it in reservoirs.

CO2 Collection

CO2 Capture and Storage

The Alberta Carbon Trunk Line (ACTL) project will collect CO2 from industrial facilities and inject it in reservoirs in Alberta; in some cases, the carbon dioxide will be used in EOR projects.

Source: Total Energy; Enhance Energy
Different players have started developing integrated projects aimed at addressing the technical, financial and environmental challenges.

The Firebag project uses cogeneration units to generate steam used in SAGD and electricity for facility consumption.

Source: Suncor; Arthur D. Little Analysis
In the face of uncertain markets and increasing environmental pressure, the success of heavy oil developments will increasingly depend on technological innovations.

Key Success Factors
- Technological innovation
- Integrated project development strategy
- Risk mitigation strategies
- Development planning and choosing the appropriate focus
- Development of sustainable strategies

Risks and Challenges
- Uncertain markets
- Project cost overruns
- Environmental impacts
- Energy consumption
- Operational risks
- Scarcity of inputs
- Political and contractual risks

Source: Arthur D. Little Analysis
Arthur D. Little has been at the forefront of innovation since 1886. We are an acknowledged thought leader in linking strategy, innovation and transformation in technology-intensive and converging industries. We navigate our clients through changing business ecosystems to uncover new growth opportunities. We enable our clients in building innovation capabilities and transforming their organization.

Our consultants have strong practical industry experience combined with excellent knowledge of key trends and dynamics. Arthur D. Little is present in the most important business centers around the world. We are proud to serve most of the Fortune 1000 companies, in addition to other leading firms and public sector organizations.

For further information please visit www.adlittle.com

Copyright © Arthur D. Little 2015. All rights reserved.

Contact:

Rodolfo Guzman
Latin America Managing Partner
Arthur D. Little, Inc.
711 Louisiana Street
Suite 2120
Houston, Texas 77002
Mobile: +1-281-686.0298
E-mail: guzman.r@adlittle.com