HEAVY OIL RECOVERY IN TRINIDAD AND TOBAGO

Raffie Hosein* and Jerome Rajnauth**

* The University of The West Indies
** The Ministry of Energy and Energy Affairs
Trinidad and Tobago Heavy Oil Recovery
Location of Heavy Oil and Tar-sands On land

Resources (OIIP) (MMBO)
Heavy Oil: 1500
Tar-sands: 2500
Location of Heavy Oil and Tar-sands Off-shore

Resources (OILP) (MMBO)
Heavy Oil: 2500
Tar-sands: ?
Trinidad and Tobago Heavy Oil Recovery, bopd

Total Oil Production \(\approx 90,000 \)
Heavy Oil Production \(\approx 35,000 \)
Total Primary (on land) \(\approx 9,500 \)
Total Primary (off-shore) \(\approx 20,000 \)
Total EOR \(\approx 5,500 \)
Steam and WASP \(\approx 5,400 \)
\(\text{CO}_2 \) injection: \(\approx 60 – 100 \)
Heavy Oil Production by Steam Injection and WASP

First project started in 1963
Total projects = 20

Major Projects:
- Forest Reserves project
- North Palo Seco
- Central Los Bajos
- North Fyzabad
- Bennett Village
- Apex Quarry
- Parrylands
- Guapo
- Cruse E
- Converted to WASP from 1997
Performance Evaluation for Heavy Oil Recovery by Steam Injection

“Huff n Puff” operations (10 % of OOIP)

Maximum of 6 cycles
Steam slug size of 10,000 barrels per cycle
Soak period of 2 weeks
Production cycle of up to 6 months
Best Operation Practice for a Steam Injection Project in Trinidad

Forest Reserves Project 111

1965 - “Huff n Puff”
1967 - Pilot Flood
1968, 1971 and 1977 - Expansion periods
1979 - Peak production of 2600 bopd
June 1995 - 12.8 million bbls. (68 % OOIP) oil recovered and 57 million bbls. steam injected
1997 – 400 bopd, converted to WASP
Present – 100 bopd
Heavy Oil Production by Carbon Dioxide Injection

First project started in 1973
Total projects = 3

Forest Reserve: EOR 33
Forest Reserve: EOR 26
Forest Reserve: EOR 34
double quote ("huff n puff")
double quote

Recovery: 6 – 8 % OOIP
Performance Evaluation for Heavy Oil Recovery by Carbon Dioxide Injection

“Huff n Puff” operations
Maximum of 5 cycles
Slug size of 1 MMscf / ft of net sand
Soak period of 3 – 5 days
Production cycle of over 6 months
Monitoring Practices for Steam or Gas Injection Projects

- Understanding the sub-surface geology – the single most important factor that determines success
- Gravity Segregation, channeling, early breakthrough

Simple indicators:
- Steam or gas volume injected and produced
- Oil and water production
- Average reservoir pressure
- Fluid maps: iso-thermal, iso-baric, iso-salinity, iso-pack, iso-gross, nett rates, iso-cummulative production, iso-water-cut
Trinidad and Tobago Heavy Oil Recovery

Tar-sands